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Abstract

As overhead persistent surveillance sensors become more capable at acquiring wide-field 
image sequences for longer time-spans, the need to exploit such data becomes ever 
greater.  A desirable use of such sensors is to be able to track all the observable vehicles 
while they persist in the imagery. Typically, this imagery is characterized by lower 
resolutions (e.g. >= 0.5 m/pixel ) and lower frame rates (e.g. ~ few Hz ).  We describe our 
initial implementation of a multiple-vehicle tracking algorithm for overhead persistent
surveillance imagery.  Subsequent reports will then present results of applying this 
tracker to specific persistent surveillance imagery as well as algorithm improvements and
extensions for dealing with wider-field imagery.

1.0  Introduction

Tracking multiple vehicles in persistent surveillance image sequences is a very difficult 
problem in general for a number of reasons relating either to the scenery or the sensor:

• Vehicles are small (e.g. several to tens of pixels), or low contrast
• Many vehicles, some of which may be close together, with variable speeds 

and paths including stops. 
• Obscurations of the path by buildings, overpasses, trees, terrain, or other 

vehicles.
• Other scene clutter that may appear to be moving such as parked cars, sun 

glinting, tall building edges, etc.

• Low frame rates
• Low resolution 
• Grayscale information only
• Image stability issues

The initial deterministic approach we take here is based in part on our earlier single-
vehicle deterministic tracking algorithm [1], but a number of modifications are needed to 
handle multiple vehicles. Our initial method relies on the mover map, path dynamics, 
and image features to perform tracking.  It does very well when the vehicles stay 
separated and the obscurations are small enough such that the vehicles keep a constant 
speed and direction under the obscuration.  We attempt to track vehicles that come to a 
stop such as at a stop sign or stop light, but have mixed results for such cases depending 
on the appearance and dynamics of target.  It is arguable whether we should allow for 
stopping at the first stage of the tracker, but instead just generate reliable mover track 
segments that can be linked together in a later stage of tracking.



2.0 Pre-Processing

The basic processing steps that the raw camera data must go through before tracking is 
even possible are as follows given in Figure 1.  Note that the blocks one and two could be 
swapped, but for the testing done thus far, the ordering was as in Figure 1.

Figure 1:  Basic processing steps prior to tracking

2.1 Geo-rectification

If streamed GPS and inertial navigation system data is available with the image sequence, 
it is possible to geo-rectify and resample the data to a NADIR looking view at a specific 
ground sampling interval.   This has the advantage that it is much more straightforward to 
translate pixel positions in the image to latitude and longitude so that we get can get 
actual locations and paths of the vehicles for integration with geographical information 
systems.  Describing the algorithm for doing this is beyond the scope of this report but 
can be found in [2].

2.2 Stabilization

As with most real-life navigations systems, the navigation data used in performing the 
geo-rectification is subject to errors. Likewise, the cameras won’t necessarily be perfectly 
calibrated in position. As a result, the geo-rectified image sequence will not be suitably 
stabilized for best mover detection.   If we can stabilize the image down to single pixel 
accuracy we will have optimal conditions for the mover detection step.  Typically, for 
airborne imagery an affine-based stabilization works very well but a dense 
correspondence approach can also be used, especially if there is significant terrain relief 
or tall buildings.  The stabilization algorithm we commonly use is described in [3] but 
can be found in common textbooks on the subject [4].

2.3 Mover segmentation

The mover segmentation is a very important step because the detected motion regions are 
used directly to guide the tracker. The purpose here is to generate a binary image for 
each intensity image in the sequence where a 1 indicates a motion region and a zero does 
not.  After originally experimenting with a 3-frame-differencing approach [1], we are 
currently experimenting with a median-filter based approach which does a better job at 
filling in gaps in the larger vehicles, except at the slower velocities.  It is a non-recursive, 
highly adaptive technique that uses a sliding time window.  The user can pick the frame 
buffer size.  With the lower frame frames, buffer sizes of 5 to 7 frames work well.
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Although increasing the buffer size helps with slower movers, we have to be careful with 
larger images because we need to be careful about the memory usage as the frame buffer 
increases. If the image sizes become too big, it would be possible to split up the data as 
needed and apply mover segmentation on smaller regions.

The algorithm is conceptually quite simple. A block diagram of the algorithm is 
shown in Figure 2. An estimate of the stationary background at frame N is estimated by 
computing the temporal median at each pixel location over some number of frames, B.  
The absolute value of the subtraction of the background estimate from the current 
(foreground) frame N yields an absolute difference image where brighter regions have a 
greater probability of being in motion and darker regions are less likely to be in motion.  
At this point, a threshold based on the statistics of the difference image is applied.   
Typically 5*sigma to 8*sigma is good for selecting the motion regions.  We have built in 
the ability to let the threshold vary spatially, so instead of calculating and using the sigma 
of the whole image at once to determine a single threshold, we can calculate it locally 
with some given region size. This would be useful for images whose mean intensity has 
some large scale variations.  After the threshold step, we have always found it useful to 
reject all regions less than or greater than a certain pixel count.  The pixel counts depend 
on the resolution of the imagery.   Sometimes we also find it useful to apply a 
morphological closing operation with a small square or circular mask to clean up the 
blobs. Example imagery at each major step of the procedure is shown in Figure 3.

Figure 2:  Block diagram of median-filter based motion segmentation.
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3c:  Absolute difference 3d:  Thresholded/etc.

Figure 3:  Example imagery at each step of median-filter based mover segmentation.

Depending on how well the stabilization was done and the scenery content, what 
we see in the mover map may be exactly what we wanted (moving vehicles) or it may 
contain a number of clutter sources.  These clutter sources come from buildings, 
especially tall buildings, terrain altitude variations, other moving objects (e.g. trees in the 
wind), and sun glints off water or parked cars.  If the camera platform was stationary 
most of this clutter would not exist, except that caused by the wind, but if the camera 
platform is airborne and rotating about a particular location, for instance, then it will be 
an issue.  There are various ways to deal with the clutter sources. Sometimes these can 
be cleaned up with the region size filter, but often these clutter sources will make it 
through the region size filters. A straightforward way to deal with movers not associated 
with vehicles on roads is to mask out regions where vehicles can’t go.  This mask can be 
either manually or automatically generated from the image itself or knowledge of the 
road network

3.0 Tracking algorithm

We now describe the current implementation of the multi-vehicle tracker.

3.1 Track file format  

In order for the tracking to work, we need to be able to keep a record of each vehicle 
being tracked as well as some information about that vehicle.  Currently, we keep track of 
the following information:

• Frame #
• Track ID
• Center position of region ( x, y in pixels)
• Bounding box (x0, y0, xsize, ysize)
• x and y velocity (pixels/frame)
• track length in # of frames
• number of frames missed
• track status (0 for just initialized, 1 for moving, -1 for static, -2 for missed)



As the tracking algorithm matures it is possible that we could add additional information 
or use a separate working track file to store more key features of the tracks or the vehicles 
themselves (e.g. intensity or color histograms, certainty of the position/velocity estimates, 
…) We currently don’t store lots of information about vehicle appearance because we 
have its position information and can extract out a template of the vehicle as the tracker 
proceeds.

This track-file format is useful for research purposes only, and is not intended to 
be used in a final product.   A final track-file format should be one that will integrate into 
further exploitation tools and will necessarily include latitude and longitude and 
date/time-stamps.

3.2 Track initialization 

Before vehicles can be tracked, they must be found in the first place. Ideally, we would 
like to have a perfect vehicle detector to initialize all the potential tracks, though many of 
the detected vehicles would be stationary and of little interest for tracking.   Our track 
initialization approach is simple; on the first frame of interest, all validly detected motion 
regions are considered to be candidate movers and are initialized with a position and a 
bounding box.  For example, the nine regions detected in Figure 3d are be initialized as 
shown in Figure 4. We can see here the importance of getting the mover segmentation
right and potential tradeoffs with the threshold and morphological operations.  We see 
here that the big truck on the left is separated into two regions and the big truck on the 
top-right is separated into three regions.  If those trucks were traveling faster, there would 
be no gaps.   If we allow a larger radius in the morphological operation, we can close 
those gaps, but this comes at the expense of not being able to distinguish two or more 
vehicles when they are close together because their regions would be merged. Future 
work may include adding in the extra step of trying to connect motion regions that appear 
to be from the same vehicle by analyzing object edge or boundary maps.

Because parked vehicles can start moving at any time or they can move in from 
the edge of the imagery, with each new frame it is necessary to check if there are new 
movers to initialize.  As the track association proceeds, all movers that have been 
accounted for are zeroed out in the mover map and any remaining movers are then 
initialized as new movers.



Figure 4: Newly initialized tracks shown with initial bounding boxes and track ID’s

3.3 Track association for just initialized tracks

Once new tracks are initialized, we only have a single frame of observation, which means 
we don’t know the speed or direction of the vehicle yet.  To accommodate this, we allow 
for a larger search space than usual and only use target features for association. The two 
features we currently use are the peak of the cross-correlation and an average intensity 
difference between the current vehicle and the candidate vehicle in the next frame.  The 
candidate target with the highest cross-correlation peak whose intensity difference is low 
enough gets the match.  The matching vehicle then gets a track status of 1, a track length 
of 1, and a velocity assigned to it.  

Future work may include trying to detect the orientation of the vehicle as well as 
the road direction itself thus giving a better idea of where the vehicle could be headed, 
but the current algorithm does not do that.  Improved performance may also include using 
a normalized and even perhaps a more direction sensitive correlation metric as well as 
other target features such as intensity (or color) histograms.

3.4 Track association once moving

Now that we have the initial velocity estimate for each track, we can predict the next 
position.  The tracker loops through each vehicle in motion and tries to find the next 
location of the vehicle.  Using the mover map, it only searches motion regions that fall 
inside its allowable search area.  The maximum radius of the search area is defined at the 
start of the algorithm based on realistic maximum velocity changes we would expect. A 
diagram of this is shown in Figure 5.



Figure 5:  Diagram of the track association search area.

Currently four metrics are then computed for each candidate location and the candidate 
location with the “best” combination of metrics is selected.   If the vehicle track has been 
established for a few frames and the vehicle is moving slow enough, we also check for 
the static case where the vehicle may have stopped.  The same metrics from the single 
vehicle tracker are being used [1]. The following metrics are used:

• Peak of the cross correlation between template and candidate, which have each 
been demeaned and Hanning windowed.  This helps us match the shape.

• Average intensity difference (or hue difference for color).  This helps to prevent 
switching from a bright to a dark vehicle or visa-versa.

• Path coherence – a measure of agreement between the object trajectory and real 
life constraints. A low value is best.

o Positive
o Normalized
o Reflects local absolute angular deviations
o Responds equally to positive and negative velocity changes
o Weights w1 and w2 allow emphasis of angular or velocity deviations.  

Currently we have w1=w2=0.5

• Speed difference (i.e. acceleration) - path coherence was not quite enough 
information so looking at the simple speed difference is helpful. A low value is 
best.

The candidate target with a combination of good enough metrics gets the match.  Ideally, 
the chosen target has the highest correlation peak, lowest intensity difference, best path 
coherence, and lowest speed difference, but often times that is not the case. If the 
dynamics have high scores, we can allow for less correlation and visa-versa.  If no match 
can be found, we allow the vehicle to go missing (with a status = -2) and assign the 
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predicted position to it.   If we don’t detect the same vehicle within a specific number of 
frames, the track is terminated. The metrics chosen here are by no means optimal and 
better metrics are being considered.

We allow the bounding box to slowly change as the region size or shape changes.  
This is useful when the vehicle speeds up to reveal its true size or when a longer vehicle 
turns a corner.  But it can cause confusion when a vehicle slows down causing the motion 
region to either shrink (on small vehicles) or break up (larger vehicles).  The ideal thing 
to do would be to keep the vehicle area constant once we are sure of its footprint and not 
let it shrink.

3.4.1 Multi-target specific considerations

Tracking multiple or in fact every detected vehicle in an image sequence can be much 
more complicated than tracking only one vehicle, especially when the traffic density 
increases and the road network is complex.   We can break down the situations into 
several cases.

• Best case:   The vehicle matches exactly one moving region in the next frame.  
We update the track file with this new location and velocity and add one to the 
track length and keep or set track status to 1 (moving).

• Two or more vehicles match the same region.  How best to handle this is currently 
under investigation.  The current code is set to only allow one match per region 
because it zeros out matched regions in the mover map after they are matched the 
first time, which means that another future vehicle in the track association loop 
wouldn’t even check that mover region because it no longer exists.  An example 
of this is given in Figure 6a and 6b and 6c.  We have experimented with allowing 
multiple matches to the same region by not zeroing out the mover map and 
allowing vehicles to be merged for a maximum number of frames before merging 
the two track IDs, but this approach needs more work.

• Mover region starts breaking up.  This can happen when two or more close 
together vehicles begin to separate.  In this case the best match to the larger region 
is chosen to keep the same track ID.  The region that didn’t get matched will then 
become a newly initialized region with a new track ID.  An example of this is 
shown in Figure 6c and 6d with track ID 332 breaking up into track ID 332 and 
ID 431.  Another reason this can occur is when a vehicle (this is more common
for larger vehicles) slows down and the motion region starts to break up.  Often,
the front and back of a large vehicle will have separate motion regions when 
traveling slowly and the degree to which this occurs is dependent on the mover 
detection and segmentation algorithm, the GSD, how many frames are used, and 
the frame-rate.   The same method for handling this scenario is used, but ideally 
we would want to improve how we handle this situation.   Options include adding 
in some additional image processing to detect the vehicle size and shape at the 
first detection, or we could get it from when the vehicle is moving faster.  In 
either case, once we know the estimated true size we want conserve the vehicle 
area and not let it break up.



Figure 6a

Figure 6b

Figure 6c



Figure 6d

Figure 6:   Example of two vehicles merging together (ID341 and ID332), with the rule 
that vehicles can’t merge.   The position ID341 is predicted and still shown in Figure 6b, 
but is lost several frames later in Figure 6c since the cars (ID 332) are still in close 
proximity.  The now separated vehicle gets a new ID of 431 in Figure 6d. 

3.5 Track filters

After the tracking for the sequence is completed and a track-file generated, we find it 
useful to remove certain tracks that will probably be of little interest. The filters currently 
implemented are the following.

• Track length filter.   User specifies the minimum length of the track in number of 
frames.  All tracks less than that length are eliminated.

• Missing track filter.  This is useful to do to the track file prior to creating a movie.  
It removes all entries from the track-file with a missing status (= -2).

• Salient track filter.  The purpose of this filter is to remove any tracks that don’t 
seem to be really doing anything.   It looks at the track status column and it too 
many of them are stationary status (= -1), it removes them.

Note that these filters are completely optional.  We mostly use the track length filter.

4.0 Performance

Generally, the performance of the mtrack algorithm is best when the vehicles have high 
contrast with respect to the road and are well separated from each other with minimal 
clutter or obscurations.  We have had success with tracking through obscurations, either 
trees or buildings, primarily in situations when the vehicle keeps a constant velocity 
under the obscuration and does not stop or turn beneath it.
The detailed performance results of the current multi-tracker algorithm will be discussed 
in a follow-on report.



5.0  Conclusions

We have developed and implemented an initial version of a multi-vehicle tracking 
algorithm in IDL for tracking vehicles in persistent surveillance imagery.  Future reports 
will include extensions for scaling the algorithms up to handle much wider field data as 
well as various improvements to the tracking algorithm.
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